

Application

The devices may be used for any remote application to record state informations and billing data for power feeders, distributions or specific loads in electrical systems. They can be connected via intranet or internet. For an on-site display the devices can be used along with the display unit A200, which visualizes all state information via high-contrast LED displays.

All described functions are combined in a DME 408. To use it in superior systems using the "Modbus over TCP/IP" protocol not all functions are really needed. The DME 407 therefore doesn't supports mail and file transfer and provides no measurand acquisition via browser.

Main Features

- Accurate reporting (class 0.2) of the present system state
- Recording energy consumption and billing data (load profiles, meters)
- Remote acquisition of measurement data via Ethernet using WEB-Browser (http), file transfer (ftp) or Modbus over TCP/IP protocol
- Acquisition of mean values for any desired measurand with trend calculation and logging of their progression
- Monitoring alarm limits: Alarming via E-Mail (smtp)
- Periodical transmission of measurement data via E-Mail
- Functionally separated configuration of the installation bound measuring task and the analysis of measurement data via Ethernet
- Built-in, synchronizable realtime clock for time stamping of measurands

Ethernet Demos

Visit the ethernet demos on our homepage. A DME 408 is arranged in the mains input of our factory and delivers online energy consumption data via WEB browser. Additionally a downloadable application software shows the capabilities of measurement acquisition and analysis using the Modbus over TCP/IP interface.

State measurands:	Class 0.2
Active energy meters:	Class 1 (IEC 1036)
Reactive energy meters:	Class 2 (IEC 1268)

Technical Data

Ethernet connector:	RJ45
Physical layer:	10/100 Base-T
⊃ower supply:	AC/DC 85 230 V

Symbols

Symbols	Meaning	Symbols	Meaning (continuation)
x	Measured variable	Q2	Reactive power phase 2 (phase-to-neutral L2 – N)
U	Input voltage	Q3	Reactive power phase 3
Ur	Rated value of the input voltage		(phase-to-neutral L3 – N)
U 12	Phase-to-phase voltage L1 – L2	S	Apparent power of the system $S = \sqrt{l_{1}^{2} + l_{2}^{2} + l_{2}^{2}} \cdot \sqrt{U_{1}^{2} + U_{2}^{2} + U_{2}^{2}}$
U 23	Phase-to-phase voltage L2 – L3	S1	Apparent power phase 1 (phase-to-neutral $L1 - N$)
U 31	Phase-to-phase voltage L3 – L1	S2	Apparent power phase 2 (phase-to-neutral $L2 - N$)
U1N	Phase-to-neutral voltage L1 – N	S3	Apparent power phase 3 (phase-to-neutral L3 – N)
U2N	Phase-to-neutral voltage L2 – N	Sr	Rated value of the apparent power of the system
U3N	Phase-to-neutral voltage	PF	Active power factor $\cos\varphi = P/S$
	L3 – N	PF1	Active power factor phase 1 P1/S1
UM	Average value of the voltages (U1N + U2N + U3N) / 3	PF2	Active power factor phase 2 P2/S2
		PF3	Active power factor phase 3 P3/S3
1		QF	Reactive power factor sin $\varphi = Q/S$
10		QF1	Reactive power factor phase 1 Q1/S1
12		QF2	Reactive power factor phase 2 Q2/S2
lr	Rated value of the input current	QF3	Reactive power factor phase 3 Q3/S3
IM	Average value of the currents $(11 + 12 + 13) / 3$	IF	Power factor of the system
IMS	Average value of the currents and sign of the		$LF = sgnQ \cdot (1 - PF)$
	active power (P)	LF1	Power factor phase 1 sgnQ1 · (1 - PF1)
IB	RMS value of the current with wire setting range (bimetal measuring function)	LF2	Power factor phase 2 sgnQ2 · (1 – PF2)
BS	Slave pointer function for the measurement of the RMS value IB	LF3	Power factor phase 3 sgnQ3 · (1 – PF3)
φ	Phase-shift between current and voltage	Н	Power supply
F	Frequency of the input variable	Hn	Rated value of the power supply
Р	Active power of the system $P = P1 + P2 + P3$		
P1	Active power phase 1 (phase-to-neutral L1 – N)		
P2	Active power phase 2 (phase-to-neutral L2 – N)		
P3	Active power phase 3 (phase-to-neutral L3 – N)		
Q	Reactive power of the system $Q = Q1 + Q2 + Q3$		
Q1	Reactive power phase 1 (phase-to-neutral L1 – N)		

Applicable standards and regulations

ment

(static relays only)

control equipment

equipment

equipment

AC quantities

and 2)

appliances

Terminal markings

Electrical measuring transducers for

converting AC electrical variables into

Safety regulations for electrical measuring control and laboratory equip-

Protection types by case (code IP)

High-frequency disturbance test

Electromagnetic compatibility for industrial-process measurement and

Electromagnetic compatibility of data processing and telecommunication

Limits and measuring principles for radio interference and information

-1 Cold, -2 Dry heat, -3 Damp heat,

Alternating current static watt-hour meters for active energy (classes 1

Tests for flammability of plastic materials for parts in devices and

-6 Vibration, -27 Shock

analogue and digital signals

IEC 688 resp.

IEC 1010 resp. EN 61 010

IEC 529 resp. EN 60 529

EN 55 011

resp.

DIN 40 110

DIN 43 807

IEC 1036

UL 94

IEC 255-4 Part, E5

IEC 1000-4-2/-3/-4/-6

IEC 68-2-1/-2/-3/-6/-27

EN 60 068-2-1/-2/-3/-6/-27 Ambient tests

EN 60 688

Overload capacity:

Current circuit 10 A 400 V at single-phase AC system resp. 693 V at three-phase system Voltage circuit 480 V at single-phase AC system resp. 831 V at three-phase system

Continuous thermal ratings of inputs

Current circuit	10 A	400 V single-phase AC system 693 V three-phase system
Voltage circuit	480 V 831 V	single-phase AC system three-phase system

Short-time thermal rating of inputs

Input variable	Number of inputs	Duration of overload	Interval between two overloads
Current circuit	400 V single-p	phase AC syst	tem
	693 V three-p	hase system	
100 A	5	3 s	5 min.
250 A	1	1 s	1 hour
Voltage circuit	Voltage circuit 1 A, 2 A, 5 A		
Single-phase AC system 600 V H _{intern} : 1.5 Ur	10	10 s	10 s
Three-phase system 1040 V H _{interr} : 1.5 Ur	10	10 s	10 s

Technical Data

Ethernet Interface - Measuring input Bus connections: RJ45 Rated frequency: 50, 60 or 16 2/3 Hz Physical Layer: 10/100 Base-T Nominal input voltage: 57 to 400 V (phase-to-neutral) IP address: 192.168.57.240, resp. settable via browser 100 to 693 V (phase-to-phase) Max. length of bus: 2500 m Nominal input current: 1 to 6 A Interface: Electrically insulated (500 V) Voltage circuit: U² / 400 k Ω Consumption [VA]: Current circuit : $\leq l^2 \cdot 0.01 \Omega$ Locally from a PC, or via ethernet Configuration possibilities:

Camille Bauer

Table 1: Measurands available via Ethernet Interface

Sym-	Meaning	Application		
0013		A11 	A34	A24 / A44
U	Input voltage	•		
U12	Phase-to-phase voltage L1 – L2		•	•
U23	Phase-to-phase voltage L2 – L3		•	•
U31	Phase-to-phase voltage L3 – L1		•	•
U1N	Phase-to-neutral voltage L1 – N			•
U2N	Phase-to-neutral voltage L2 – N			
U3N	Phase-to-neutral voltage L3 – N			
UM	Average value of the voltages			•
I	Input current	•		
11	AC current L1			•
12	AC current L2			
13	AC current L3		•	
IM	Average value of the currents	_	•	•
IMS	Average value of the currents and sign of the active power		•	•
IB	RMS value of the current with wire setting range (bimetal measuring function)	•		
IB1	RMS value of the current with wire setting range (bimetal measuring function), phase 1		•	•
IB2	RMS value of the current with wire setting range (bimetal measuring function), phase 2		•	•
IB3	RMS value of the current with wire setting range (bimetal measuring function), phase 3	_	•	•
BS	Slave pointer function for the measurement of the RMS value IB	•		-
BS1	Slave pointer function for the measurement of the RMS value IB, phase 1		•	•
BS2	Slave pointer function for the measurement of the RMS value IB, phase 2	_	•	•

Sym-	Meaning	Appli	cation	
bols		A11	A34	A24 /
		 A16		A44
BS3	Slave pointer function for the measurement of the RMS value IB, phase 3		•	•
F	Frequency of the input variable	•	•	•
Р	Active power of the system	•	•	•
P1	Active power phase 1 (phase-to-neutral L1 – N)			•
P2	Active power phase 2 (phase-to-neutral L2 – N)		_	•
P3	Active power phase 3 (phase-to-neutral L3 – N)		_	•
PF	Active power factor $\cos \varphi = P/S$	•	•	
PF1	Active power factor phase 1, P1/S1		_	•
PF2	Active power factor, phase 2, P2/S2		—	•
PF3	Active power factor, phase 3, P3/S3		_	•
Q	Reactive power of the system	•	•	•
Q1	Reactive power, phase 1 (phase-to-neutral L1 – N)		_	•
Q2	Reactive power, phase 2 (phase-to-neutral L2 – N)			•
Q3	Reactive power, phase 3 (phase-to-neutral L3 – N)		_	•
S	Apparent power of the system	•	•	•
S1	Apparent power, phase 1 (phase-to-neutral L1 – N)			•
S2	Apparent power, phase 2 (phase-to-neutral L2 – N)		—	•
S3	Apparent power, phase 3 (phase-to-neutral L3 – N)		_	•
LF	Power factor of the system			
LF1	Power factor, phase 1			
LF2	Power factor, phase 2			•
LF3	Power factor, phase 3	—		

Continuation of Table 1 see on next page!

Continuation of Table 1:

Sym-	Meaning	Appli	cation		
		A11 A16	A34	A24 / A44	Surge test:
QF	Reactive power factor $sin\phi = Q/S$	•	•	•	Test voltage:
QF1	Reactive power factor phase 1, Q1/S1			•	
QF2	Reactive power factor phase 2, Q2/S2			•	
QF3	Reactive power factor phase 3, Q3/S3			•	
	Power meter 1 4			•	
	Average values 1 10	•	•	•	

For the average values 1 ... 10 their progression and trend is also available.

Where c.t's and/or v.t's are used for measurement, the values are referred to the primaries of the transformers.

Reference conditions

Ambient temperature:	15 30 °C
Input variable:	Rated useful range
Power supply:	H = Hn ± 1%
Active/reactive factor:	$\cos\varphi = 1$ resp. $\sin\varphi = 1$
Frequency:	50 60 Hz, 16 2/3 Hz
Waveform:	Sinusoidal, form factor 1.1107
Miscellaneous:	EN 60 688

IP 40, housing

IP 20, terminals

|||

System response

Accuracy class:	0.2 resp. 0.4 (phase shift applica-	Installation data		
	tions) Active energy meters class 1, acc. IEC 1036 (0.1 lr \leq l \leq 1.5 lr) Reactive energy meters class 2, acc. IEC 1268 (0.1 lr \leq l \leq 1.5 lr)	Housing:	Housing T24 See Section "Dimensioned drawings"	
		Housing material:	Lexan 940 (polycarbonate), flammability class V-0 acc. to UL 94,	
Measurement cycle:	Depending on application		seit-extinguisning, non-aripping, tree of halogen	
Response time:	1 2 times measurement cycle	Mounting:	For snapping onto top-hat rail	
Influencing quantities and permissible variations			(35 × 15 mm or 35 × 7.5 mm) acc. to EN 50 022 or	
Acc. to EN 60 688			directly onto a wall or panel using the	
Electrical safety			pull-out screw hole brackets	
Protoction class:	Ш	Orientation:	Any	
	11 	Weight:	Approx. 0.7 kg	

Input voltage:	AC 400 V
Input current:	AC 400 V
Output:	DC 40 V
Power supply:	AC 400 V DC 230 V
5 kV; 1.2/50 μs; 0.5 V	Ns
50 Hz, 1 min. acc. to	EN 61 010-1
5550 V, inputs versus as well as outer surfa	all other circuits ce
3250 V, input circuit other	s versus each
3700 V, power supply and SCI as well as ou	versus outputs iter surface
490 V, outputs and S other and versus oute	Cl versus each er surface

Power supply \rightarrow

Insulation test:

DC, AC power pack (DC or 50 ... 60 Hz)

Rated voltage $U_{\rm N}$	Tolerance
85 230 V DC, AC	DC – 15 … + 33% AC ± 10%
Concurrention	. 0.14/ roop

RS 232 C

Consumption:

 \leq 9 W resp. \leq 10 VA

Programming connector on transducer

Interface: DSUB socket:

GND 9-pin

The interface is electrically insulated from all other circuits.

Enclosure protection:

Overvoltage category:

Terminals

Ambient conditions

Туре:	Screw terminals with wire guards	Variations due to ambient		
Max. wire gauge:	\leq 4.0 mm ² single wire or 2 × 2.5 mm ² fine wire	temperature:	± 0.2% / 10 K	
		Nominal range of use for temperature:	0… <u>15…30</u> …45 °C (usage group II)	
Ambient tests		Operating temperature:	– 10 to + 55 °C	
EN 60 068-2-6:	Vibration	Storage temperature:	– 40 to + 85 °C	
Acceleration:	± 2 g	Annual mean		
Frequency range:	10 150 10 Hz, rate of frequency sweep: 1 octave/minute	relative humidity:	≤ 75%	
		Altitude:	2000 m max.	
Number of cycles:	10, in each of the three axes	Indoor use statement		
EN 60 068-2-27:	Shock			
Acceleration:	3 × 50 g 3 shocks each in 6 directions			
EN 60 068-2-1/-2/-3:	Cold, dry heat, damp heat			

Table 2: Ordering information

The following device versions are available as standard versions. It is only necessary to quote the Order No.:

DESCRIPTION		
Mechanical design		
Housing T24 for rail and wall mounting		
Rated frequency		
50 Hz		
Power supply		
85 230 V DC/AC		
Device type		
DME 407, german/english	154 930	
DME 407, french/english	154 948	
DME 408, german/english	152 843	
DME 408, french/english	149 329	

The language versions apply to the available languages for the configuration interface via internet browser.

Electrical connections

Function				Connection
Measuring input	A	C current	IL1 IL2 IL3	1 / 3 4 / 6 7 / 9
	A	C voltage	UL1 UL2 UL3 N	2 5 8 11
Default IP				15 16
Power supply	AC		~ ~	13 14
-0	DC		+ -	13 14

If power supply is taken from the measured voltage internal connections are as follow:

Application (system)	Internal connection Terminal / System	
Single-phase AC current 4-wire 3-phase	2 / 11 (L1 – N) 2 / 11 (L1 – N)	
Symmetric load All other (apart from	2 / 5 (L1 – L2)	

Default-IP

If terminals 15 and 16 are short-circuited during power-on the device will use the IP address 192.168.57.240.

RTC synchronization

The system time can be synchronized to the network frequency by applying an optional voltage $(12...36 V_{-})$ on terminals 25 and 26.

The synchronization may also be performed by means of minute-pulses (12...36 V=).

Reset

If i.e. the network parameters set no longer allow to access the device a reset of all parameters will be necessary. To do so you have to break through the foil of the label at the market position. To press the underlying reset button you need a pin of at least 10 mm length and max. 1.2 mm diameter. The button must be pressed on power-up for about 3s. Because all adjusted options and configuration settings are lost during reset perform this step only if absolutely necessary.

Difference between PF, QF and LF

Active power PF ——, reactive power QF -----, power factor LF – \cdot – \cdot – .

Dimensioned drawings

SINEAX DME 4 in housing **T24** clipped onto a top-hat rail (35 × 15 mm or 35 × 7.5 mm, acc. to EN 50 022).

SINEAX DME 4 in housing T24, screw hole mounting brackets pulled out.

Table 3: Accessories

Description	Order No.
Programming cable	980 179
Configuration software DME 4 for SINEAX/EURAX DME 424, 440, 442, SINEAX DME 400, 401, 406 and 407/408 Windows 3.1x, 95, 98, NT, 2000 and XP on CD in German, English, French, Italian and Dutch (Download free of charge under http://www.camillebauer.com) In addition, the CD contains all configuration programmes presently available for Camille Bauer products.	146 557
Operating Instructions DME 407/408 Bd-e	154 956
DME 407/408 Bf-e	154 964

Description	Order No.
SINEAX A 200	154 063
Interconnecting cable sub D 9 pol. male/male 1.8 m	154 071

Subject to change without notice • Edition 05.04 • Data sheet No. DME 407/408 Le

Camille Bauer LTD Aargauerstrasse 7 CH-5610 Wohlen/Switzerland Phone +41 56 618 21 11 Fax +41 56 618 24 58 e-mail: info@camillebauer.com http://www.camillebauer.com