

3-349-157-03 8/8.06

- 8 freely configurable control channels
- · 8 measurement inputs for temperature sensors, or 50 mV linear
- Sampling cycle 10 ms per channel
- PDPI control without overshooting
- Control parameters adaptation can be started at any time for each channel
- Functions: limit transducer / 2 and 3-step, continuous and step-action controller
- Fixed value, cascade, differential and switch control
- Hot runner control with actuating circuit and booster circuit
- Mapping for checking sensor and actuator assignments
- · Assignment to groups for control zones for synchronous heating
- Water cooling control (non-linear cooling effect with evaporation)
- 16 binary inputs/outputs with short-circuit detection can be freely assigned to controller states, functions and channels
- · 4 additional continuous outputs or 4 additional binary I/Os as option
- Fieldbus options: Profibus-DP, CAN-Bus, Modbus (RS 485)
- · Simatic S7 project for the management of control data
- Control terminal can be connected (Modbus)
- Extra port for configuration etc. (RS 232)
- Data logger for all actual values and setpoints
- Alarm history with time stamp

Power Bus Addr. Bus Addr. DP ok DP

New

Power Limitation

Features

- 8 sensor inputs can be switched individually with software to thermocouple, Pt100 or 50 mV linear
- Thermocouple inputs immune to interference due to leakage current (upb \$33)
- Removable cold junction
- Suitable for zones with temperature rises of approximately 100 K/s to less than 100 K/h
- Direct connection of melt pressure transducers
- Monitoring for sensor breakage, polarity reversal and shortcircuiting
- · Regulated value is active in the event of sensor breakage
- Actual value correction for periodic measured-value fluctuation
- Deactivate zones as desired with internal or external signal
- Setpoint ramps (up-down), 2nd setpoint, setpoint limiting
- Feed-forward control for the avoidance of overshooting and undershooting during load changes
- Heating circuit monitoring without additional transformer
- Heating current monitoring with single-phase/three-phase external current transformers, and an optional voltage transformer for compensation of voltage fluctuation
- Remote diagnosis supported with numerous monitoring functions
- 2nd set of parameters
- Short-circuit detection at the binary outputs
- · Integrated self-restoring overload protection for binary outputs
- 24 V DC auxiliary power supply
- Complies with all relevant regulations and CSA approval

Applications

The R6000 compact 8-channel temperature controller offers concentrated control technology know-how in a rail mount housing. The autonomous controller can be very quickly configured and adapted to control systems by means of self-tuning. Outstanding control performance is achieved by means of

GOSSEN METRAWATT's own dead-beat PDPI algorithm, which even assures outstanding results for critical applications. Communications are possible via a number of standardized fieldbus interfaces, or by means of the integrated service interface.

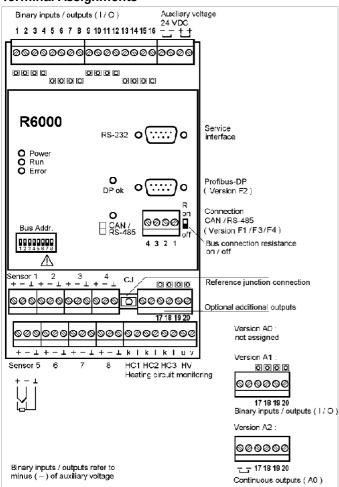
Advantages for your quality management system include the integrated data logger for all actual values and setpoints, an alarm history for error status entries with time stamp, and alarm value reports.

The controller's range of applications includes multi-channel temperature control for plastics processing machines (injection molding, extrusion, blow molding and hot runner technology), semiconductor manufacturing processes, industrial and laboratory ovens, textile machinery, climatic test cabinets, environmental simulation chambers, pharmaceuticals, food and beverage vending machines, packaging and printing machinery, temperature stabilizers and similar thermal processes.

The specially developed control algorithm (compensation for nonlinear water evaporation characteristics) allows for water-cooled extruder zone applications.

R6000

8-Channel Controller


Description

The controller can be snap-mounted to top-hat rails in accordance with DIN EN 50022. Reliable wiring is accomplished with the help of screw and clamp-type terminals which are separated according to function, allowing for rapid device replacement in the event that service is required.

The decentralized control unit is equipped with inputs for all common temperature sensors, and drives semiconductor relays or proportional actuators via freely assignable outputs. Parameters configuration for the control channels is performed via the service interface with a convenient software tool for use with a notebook. The control unit functions autonomously and exchanges actual values, setpoint values, alarm and status messages with the controls or the management system via the fieldbus interface. Complete parameters configuration can, of course, also be performed via the fieldbus interface.

Clear-cut status displays with LEDs keep the user informed concerning the status of switching outputs and inputs at the controller and the field bus. Readback outputs allow for automatic short-circuit detection and provide for a comprehensive errors recognition concept together with monitoring of sensor inputs and heating circuits.

Terminal Assignments

Applicable Regulations and Standards

IEC 61010-1 / EN 61010-1 / VDE 0411, part 1	Safety requirements for electrical equipment for measurement, control and laboratory use
IEC 60529 / EN 60529 DIN VDE 0470, part 1	Protection provided by enclosures for electrical equipment (IP code)
DIN EN 60204-1 / VDE 0113, part 1	Machine safety
IEC 61326/ EN 61326	Electromagnetic compatibility (EMC)
IEC 60584 / EN 60584 (DIN 43710)	Thermocouples
IEC 60751 / DIN EN 60751	Industrial platinum resistance thermometers and platinum resistance elements, Pt100 sensors
DIN EN 50022	Mounting rails, top-hat rail with 35 mm width for snap mounting devices
CSA	Approval granted by Canadian Standards Association

Characteristic Values

Inputs / Outputs

Sampling Rates 10 ms per channel

Thermocouple Measurement Input / Linear 50 mV

per IEC 60584 / EN 60584 / DIN 43710 Thermocouples

type J, L, K, R, S, B and N

linear 0 ... 50 mV Measuring Range

Nominal Input

0 ... 900 ° C Range for Type J, L

0 ... 1300 ° C Κ 0 ... 1750 ° C R, S 0 ... 1800 ° C 0 .. . 1300 ° C

Accuracy / Error < 0.7% of measuring range span

for types J, L, K, N

< 2.0 % of measuring range span for types R, S, for type B from 600° C and

areater

Resolution 0.1 K

Cont. AC Overload 50 / 60 Hz / 50 V AC, sinusoidal

1 V DC

Input Impedance $> 50 \text{ k}\Omega$

Error Messages for sensor breakage or polarity reversal, or

temperature outside of measuring range

Reference Junction Measurement Input

Nominal Input Range 0 ... 70 ° C

Accuracy $\pm 2 K$ Reference Junction two-step

Pt100 Resistance Thermometer Measurement Input, 2 or 3-Wire Connection

Pt100 per IEC 60751 / DIN EN 60751

Measuring Range $60 \dots 280 \Omega$ Nominal Input Range $-200 \dots 850 \degree C$ Sensor Current < 0.2 mA

Offset Compensation possible by means of parameter entry

Accuracy / Error < 0.5 % of measuring range

Resolution 0.1 K

Cont. AC Overload 50 / 60 Hz / 50 V AC, sinusoidal

C 1 V DC

Input Impedance 13 k Ω

Cable Resistance

(both directions) 2-wire connection: 0 ... 30 Ω , adjustable

3-wire connection: 0 ... 30 Ω , compensated

Error Messages for sensor breakage or short-circuit, or

temperature outside of measuring range

Sensor Input Configuration

Sensor type is selected separately for each input via the interface. Switching between thermocouple and Pt100 is accomplished with the DIP switch at the left-hand side of the housing.

Heating Current Monitoring Input

Measuring Range 1 A AC (direct connection of a

commercially available measuring

transducer)

Resolution < 0.1% of upper range value

Accuracy typically < 5% of upper range value Reproducibility < 1% of measurement value + 0.5% of

upper range value

Heating Voltage Monitoring Input

Measuring Range 10 ... 50 A AC (direct connection of a

commercially available measuring

transducer)

Resolution < 0.1% of upper range value

Accuracy typically < 5% of upper range value

Reproducibility < 1% of measurement value + 0.5% of

upper range value

Binary Inputs / Outputs

supplied directly from auxiliary voltage Switching output (heating/cooling, or

more/less for step-action controllers)

Alarm output

Read-Out Cycle

Function

Nominal Range of Use

Adjustable within a range of 0.1 ... 300 s

H signal: U ≥ auxiliary voltage, – 0.5 V I ≤ 500 mA

Total current ≤ 3 A per device

L signal: < 0.1 mA

e.g. for driving up to 3 commercially available semiconductor relays (SSR) in

series

Input Function Read back output status, external control

of PLC etc.

Nominal Range

of Use H signal: > 14 V

8 ... 16 mA at 24 V L signal: < 7 V / < 0.2 mA Overrange Limit H, L Signal

Continuous short-circuit, interruption

Continuous Outputs

Output Function Actuator Output for Proportional Actuator

Output Quantity 0 (2) ...10 V at > 1 k Ω load, 0 (4) ... 20 mA at < 300 Ω load

Resolution 0.1% of upper range value Accuracy < 3% of upper range value

Status Displays

Power on green

Run green

Bus communication active vellor

active yellow Error red

Binary Inputs / Outputs
Active yellow

3 mm dia. LEDs on metal housing

SMD LEDs at clamptype terminal blocks

Control Performance

Setpoints

Setpoint limiting	Adjustable upper and lower setting limits
Proxy setpoint	Activated via binary input or bus, adjustable value
Setpoint increase (boost)	Activated via binary input or bus, value and maximum duration can be configured
Ramp function (separate for rise and fall)	Specification of a gradual temperature change in degrees per minute Activated by means of: — Turn on auxiliary voltage — Change current setpoint value — Activate proxy setpoint — Switch from manual to automatic operation

Configurable Control Modes

Not in use	No error monitoring		
Measuring	Male Barth and a second and		
Actuator	With limit value monitoring		
Limit transducer	Two / three position controller v	without time response	
PDPI controller	Heating Cooling		
	Can be combined as desired		
	Switching Switching		
	Hot-runner Water cooling		
	Continuous Continuous		
	Step Step		
	No heating No cooling		
Proportional actuator	Two / three position controller without time response		

In addition to fixed value control, the PDPI controller also includes differential, cascade and switching controller functions.

Control Channel Combinations

	Differential controller	The temperature difference is corrected.
ı	Cascade controller	The setpoint from one or more control channels is manipulated dynamically.
	Switching controller	Depending upon operating state, a control loop with only one actuator can be controlled at two different (temperature) measuring points.

GMC-I Gossen-Metrawatt GmbH

R6000

8-Channel Controller

Self-Optimization

Can be activated from any operating state. Control parameters can be changed.

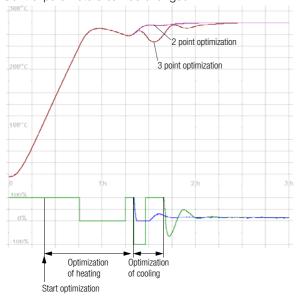


Fig. 1 Control Performance with Self-Optimization

Alarms

All errors and alarms for all channels, I/Os and functions can be accessed separately via the bus or the service interface.

Selected errors and alarms can be read out to binary outputs.

Selection and assignment to a specific output can be configured as desired.

Channel-Specific Alarms

- Broken sensor, reversed polarity
- Two upper and two lower limit values, relative and absolute
- Heating current / heating circuit errors
- Adaptation errors

Device-Specific Alarms

- Hardware errors
- · Overloading of the measurement inputs
- Reference junction errors
- I/O errors
- Mapping errors
- Parameter errors

Alarm History

The alarm history includes 100 error status entries with the respective time stamps. Recording is started over each time the device is reset, and data are lost if auxiliary power fails. After memory has been filled to capacity with 100 entries, the oldest entry is deleted each time a new one is recorded. Data can be accessed via the RS 232 service interface and via bus (CAN-Bus, Profibus-DP, RS485-Modbus).

Monitoring Functions

Limit Value Monitoring

Two upper and two lower limit values can be configured per channel.

Alarm memory and actuation suppression can be set up.

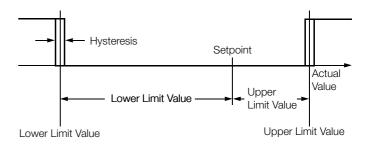


Fig. 2 Schematic Representation of Relative Limit Value Monitoring

Heating Current Monitoring

Heating Current Monitoring Permanently installed

Heating Current Acquisition With external, commercially available

current transformer

measurement of the total current of all 8 channels measurement of the total current of up to 24 channels possible with a transformer

Nominal value transfer

To be initiated automatically via the bus

Compensation of current fluctuation

By measuring heating voltage

Eri	ror messages for	
-	Antivalence	Actuator signal OFF + heating current ON Actuator signal ON + heating current OFF
Ŀ	Actual current value less than nominal value	Dip below nominal heating current value by more than $5\% + 0.1~\text{A}$ with actuator signal ON

Heating Circuit Monitoring

Without external transformer, without additional parameters

Configurable Heating circuit monitoring active / inactive Error messages for 100% heat without rising temperature, i.e.

short-circuited thermocouple,

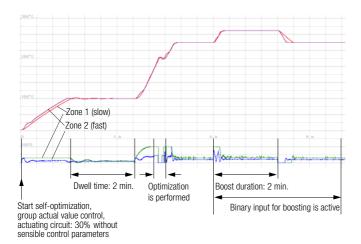
interrupted heating,

no sensor in heating circuit

Hot Runner Control Functions

Actuating Circuit

Actuation with a reduced manipulating factor and dwelling at a specific actuation setpoint serves to dry out hygroscopic heating elements.


Group Actual Value Control - Synchronous Heat-Up

Synchronous heat-up prevents thermal stress by minimizing actual value differences.

If self-optimization has been started, it takes actual value management into consideration, as well as the actuating circuit. Synchronous heat-up is also possible via several control modules.

Boosting - Temporarily Increased Setpoint

Temporarily increasing the setpoint frees clogged mould nozzles of "frozen" material remnants.

Mapping for Checking Sensor and Heater Assignments

This function is used to test for correct wiring of the heater and the sensors. Assignments can be checked when the machine is started up before initial heat-up. Testing is conducted in several phases in order to determine whether or not the temperature changes at the individual channels coincide with the actuating signals. If an error is detected, all actuating outputs remain inactive until the error has been acknowledged.

Data Logger

The data logger has enough capacity for 3600 sampled value pairs including actual values and manipulated variables for all 8 channels.

Recording is started over each time the device is reset, and data are lost if auxiliary power fails.

After memory has been filled to capacity with 3600 entries, the oldest values are deleted as new ones are recorded.

Data can be accessed via the RS 232 service interface and via bus (CAN-Bus, Profibus-DP, RS485-Modbus).

Power Limitation

With this function it is possible to prevent peaks in the power consumption of the heaters and/or to limit the total current consumption.

The positioning output of the heaters of all 4/8 channels is synchronized and the heaters are activated in a staggered pattern to ensure that only a minimum number of heaters are active at the same time.

Settings

0% function inactive, power peaks possible in regular operating mode 100% Avoidance of power peaks, actuation at full throttle; Advantage: This function is also active when power limitation has been set to 100% so that all 4/8 channels produce full heat during actuation. However, current loading is more evenly spread at the operating point, thus avoiding power peaks.

X% Current limitation, a maximum number of 1 to 7 heaters of a total of 8 is simultaneously activated, i.e. avoidance of power peaks during regular operation; power is limited during actuation.

Data Interfaces

Туре	Service Interface	F	ieldbus Interfac	e
Interface	RS 232	Profibus DP	CAN / CANOpen	RS 485
Maximum number of devices	1	32	100	32
Range of addresses	_	0 126	0 127	0 254
Transmission speed	4.8, 9.6 or 19.2 kBaud	9.6 kBaud 12 MBaud	10 kBaud 1 MBaud	4.8, 9.6 or 19.2 kBaud
Protocol per	EN 60870	EN 50170	IEC 1131 CANOpen	EN 60870 Modbus
Connection 9-pin D sub		9-pin D sub	4-pole screw terminal	

Bus Address Selection

The bus address is selected with the DIP switch at the front panel.

Service Interface

A laptop or a notebook can be connected to the RS 232 interface for service purposes.

Profibus DP Interface with Protocol per EN 50170

The R6000 is equipped with a Profibus DP interface for communication with a master computer or a PLC. Baud rates of up to 12 Mbit per second are supported.

Device Database File (DDBF)

The file required for configuring the Profibus DP (DDBF, multichannel Profibus DP) can be downloaded free of charge from the GMC-I Gossen-Metrawatt GmbH website (http://www.gossenmetrawatt.com).

Simatic S7

The functional modules integrated into this project manage data exchange for the R6000 controller and the device via Profibus DP in 3 operating modes:

- Cyclical operating mode
- Download mode
- Upload mode

GMC-I Gossen-Metrawatt GmbH

R6000

8-Channel Controller

CAN Bus

The CANopen protocol is used for communication. ESD File

The ESD file which is required for project engineering can be downloaded from the Internet at: http://www.gossenmetrawatt.com.

RS 232 / RS 485 Interface, Modbus Protocol

The Modbus protocol is used for communication with control terminals or a PLC.

The RTU mode and conformity class 0 (read and write words) are utilized by the R6000.

Auxiliary Power

A completely separate safety power supply unit is to be used for operating the controller.

Nominal Value 24 V DC

Nominal Range of Use 18 V... 30 V DC

Power Consumption Max. 10 VA, typically 6 W (without load)

Reference Conditions

Reference Quantity	Reference Condition
Auxiliary voltage	24 V DC ± 1 V
Superimposed alternating voltage	sinusoidal, or sinusoidal half-waves: 0.1 V AC
Allowable common-mode voltage	to electrically connected inputs: 0 V DC / AC
Ambient temperature	23 °C ± 2 K
Reference junction temperature	23 °C ± 2 K
Warm-up time	3 minutes
Measuring inputs	Thermocouple, low-resistance termination: \leq 10 Ω Pt100: 110 \pm 10 Ω

Influencing Quantities and Influence Error

Influencing Quantity	Nominal Range of Use	Maximum Influence Error
Ambient temperature - Thermocouple / Pt100 - Reference junction	0° C + 50° C 0° C + 50° C	± 0.05% MRS ¹⁾ / K 0.1 K / K
Cable resistance - Thermocouple - Pt100, 2-wire - Pt100, 3-wire	$ \begin{array}{ll} R = 0 \ & 200 \ \Omega \\ R = 0 \ & 30 \ \Omega \\ R = 0 \ & 30 \ \Omega \\ \end{array} $	\pm 0.1% MRS ¹⁾ / 10 Ω approx. 3 K / Ω (adjustable) \pm 2 K / 10 Ω
Warm-up influence	≤ 3 minutes	±1%

 $^{^{1)}\,\}mathrm{MRS}=\mathrm{measuring}\;\mathrm{range}\;\mathrm{span}$

Electrical Safety

Standard	IEC 61010-1 / EN 61010-1 / VDE 0411, part 1
Safety class	II .
Overvoltage category	CAT II
Fouling factor	2
Protection	IEC 60529 / EN 60529 / VDE 0470, part 1
Housing	IP 20
PCB	IP 10
Terminals	IP 20

Attention: The instrument is not equipped with an integrated circuit breaker.

Electromagnetic Compatibility

Interfere	nce Emission	IEC 61326/EN 61326		
Interference Immunity IEC 61326/EN 61326				
Test type	Standard	Test Sever	rity	Criterion
ESD	EN 61000-4-2	4 kV 8 kV	contact discharge atmospheric discharge	B B
E field	EN 61000-4-3	10 V / m	80 1000 MHz	А
Burst	EN 61000-4-4	2 kV	at all connector cables	В
Surge	EN 61000-4-5	1 kV 2 kV	symmetrical asymmetrical	A A
HF	EN 61000-4-6	3 V	0.15 80 MHz, all terminals	А

Ambient Conditions

Annual mean relative humidity, no condensation	75%
Ambient temperature	
Nominal range of use	0° C + 50° C
 Operating range 	0° C + 50° C
 Storage range 	– 25° C + 70° C

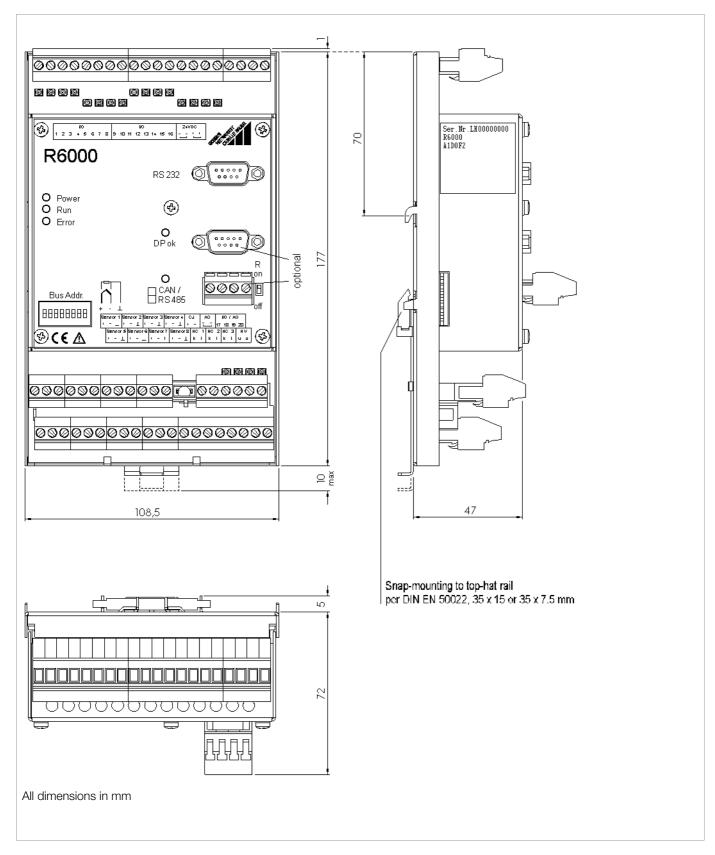
Mechanical Design

Housing Sheet metal / plastic per UL-V0

Dimensions Including

Terminal Blocks H x W x D: max. 182 x 109 x 78 mm

Weight Approx. 0.6 kg including terminal blocks


Connectors Terminal blocks

for wire cross-sections to $2.5~\text{mm}^2$ or double wire-end ferrules for $2~\text{x}~1.0~\text{mm}^2$

Mounting Integrate

for top-hat rails per DIN EN 50022, 35 x 7.5 mm or 35 x 15 mm

Dimensional Drawing

GMC-I Gossen-Metrawatt GmbH

Order Information

Description	Article Number / Feature
8-channel controller with installation instructions	R6000
Inputs / Outputs	
16 binary inputs / outputs	A0
20 binary inputs / outputs	A1
16 binary inputs / outputs, 4 continuous outputs	A2
Connectors	
Screw terminal blocks	D0
Bus Interface	
CAN / CANOpen	F1
Profibus DP	F2
RS-485 / Modbus protocol	F3
RS 485 / EN 60870 protocol	F4

Accessories

Description		Article Number
Two-step reference junction		Z306A
Operating instructions	German	Z307A
	English	Z307B
	French	Z307C
	Italian	Z307D
Modem cable for connection of service interface		GTZ 3241000R0001

R6KONFIG Configuration Tool

The R6000 can be fully configured with this tool. All values are uploaded and downloaded via the serial interface. Cyclically occurring values such as actual values, control variables, heating current and alarms can be visualized, recorded and documented online.

Edited in Germany ullet Subject to change without notice ullet A pdf version is available on the internet